126 research outputs found

    Inclined Surface Locomotion Strategies for Spherical Tensegrity Robots

    Full text link
    This paper presents a new teleoperated spherical tensegrity robot capable of performing locomotion on steep inclined surfaces. With a novel control scheme centered around the simultaneous actuation of multiple cables, the robot demonstrates robust climbing on inclined surfaces in hardware experiments and speeds significantly faster than previous spherical tensegrity models. This robot is an improvement over other iterations in the TT-series and the first tensegrity to achieve reliable locomotion on inclined surfaces of up to 24\degree. We analyze locomotion in simulation and hardware under single and multi-cable actuation, and introduce two novel multi-cable actuation policies, suited for steep incline climbing and speed, respectively. We propose compelling justifications for the increased dynamic ability of the robot and motivate development of optimization algorithms able to take advantage of the robot's increased control authority.Comment: 6 pages, 11 figures, IROS 201

    Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees

    Get PDF
    The spread of infectious diseases crucially depends on the pattern of contacts among individuals. Knowledge of these patterns is thus essential to inform models and computational efforts. Few empirical studies are however available that provide estimates of the number and duration of contacts among social groups. Moreover, their space and time resolution are limited, so that data is not explicit at the person-to-person level, and the dynamical aspect of the contacts is disregarded. Here, we want to assess the role of data-driven dynamic contact patterns among individuals, and in particular of their temporal aspects, in shaping the spread of a simulated epidemic in the population. We consider high resolution data of face-to-face interactions between the attendees of a conference, obtained from the deployment of an infrastructure based on Radio Frequency Identification (RFID) devices that assess mutual face-to-face proximity. The spread of epidemics along these interactions is simulated through an SEIR model, using both the dynamical network of contacts defined by the collected data, and two aggregated versions of such network, in order to assess the role of the data temporal aspects. We show that, on the timescales considered, an aggregated network taking into account the daily duration of contacts is a good approximation to the full resolution network, whereas a homogeneous representation which retains only the topology of the contact network fails in reproducing the size of the epidemic. These results have important implications in understanding the level of detail needed to correctly inform computational models for the study and management of real epidemics

    Optimal health and economic impact of non-pharmaceutical intervention measures prior and post vaccination in England: a mathematical modelling study

    Get PDF
    AbstractBackgroundEven with good progress on vaccination, SARS-CoV-2 infections in the UK may continue to impose a high burden of disease and therefore pose substantial challenges for health policy decision makers. Stringent government-mandated physical distancing measures (lockdown) have been demonstrated to be epidemiologically effective, but can have both positive and negative economic consequences. The duration and frequency of any intervention policy could, in theory, could be optimised to maximise economic benefits while achieving substantial reductions in disease.MethodsHere we use a pre-existing SARS-CoV-2 transmission model to assess the health and economic implications of different strengths of control through time in order to identify optimal approaches to non-pharmaceutical intervention stringency in the UK, considering the role of vaccination in reducing the need for future physical distancing measures. The model is calibrated to the COVID-19 epidemic in England and we carry out retrospective analysis of the optimal timing of precautionary breaks in 2020 and the optimal relaxation policy from the January 2021 lockdown, considering the willingness to pay for health improvement.ResultsWe find that the precise timing and intensity of interventions is highly dependent upon the objective of control. As intervention measures are relaxed, we predict a resurgence in cases, but the optimal intervention policy can be established dependent upon the willingness to pay (WTP) per QALY loss avoided. Our results show that establishing an optimal level of control can result in a reduction in net monetary loss of billions of pounds, dependent upon the precise WTP value.ConclusionsIt is vital, as the UK emerges from lockdown, but continues to face an on-going pandemic, to accurately establish the overall health and economic costs when making policy decisions. We demonstrate how some of these can be quantified, employing mechanistic infectious disease transmission models to establish optimal levels of control for the ongoing COVID-19 pandemic.</jats:sec

    Models of epidemics: when contact repetition and clustering should be included

    Get PDF
    Background The spread of infectious disease is determined by biological factors, e.g. the duration of the infectious period, and social factors, e.g. the arrangement of potentially contagious contacts. Repetitiveness and clustering of contacts are known to be relevant factors influencing the transmission of droplet or contact transmitted diseases. However, we do not yet completely know under what conditions repetitiveness and clustering should be included for realistically modelling disease spread. Methods We compare two different types of individual-based models: One assumes random mixing without repetition of contacts, whereas the other assumes that the same contacts repeat day-by-day. The latter exists in two variants, with and without clustering. We systematically test and compare how the total size of an outbreak differs between these model types depending on the key parameters transmission probability, number of contacts per day, duration of the infectious period, different levels of clustering and varying proportions of repetitive contacts. Results The simulation runs under different parameter constellations provide the following results: The difference between both model types is highest for low numbers of contacts per day and low transmission probabilities. The number of contacts and the transmission probability have a higher influence on this difference than the duration of the infectious period. Even when only minor parts of the daily contacts are repetitive and clustered can there be relevant differences compared to a purely random mixing model. Conclusion We show that random mixing models provide acceptable estimates of the total outbreak size if the number of contacts per day is high or if the per-contact transmission probability is high, as seen in typical childhood diseases such as measles. In the case of very short infectious periods, for instance, as in Norovirus, models assuming repeating contacts will also behave similarly as random mixing models. If the number of daily contacts or the transmission probability is low, as assumed for MRSA or Ebola, particular consideration should be given to the actual structure of potentially contagious contacts when designing the model.ISSN:1742-468

    Modeling infectious disease dynamics in the complex landscape of global health.

    Get PDF
    Despite some notable successes in the control of infectious diseases, transmissible pathogens still pose an enormous threat to human and animal health. The ecological and evolutionary dynamics of infections play out on a wide range of interconnected temporal, organizational, and spatial scales, which span hours to months, cells to ecosystems, and local to global spread. Moreover, some pathogens are directly transmitted between individuals of a single species, whereas others circulate among multiple hosts, need arthropod vectors, or can survive in environmental reservoirs. Many factors, including increasing antimicrobial resistance, increased human connectivity and changeable human behavior, elevate prevention and control from matters of national policy to international challenge. In the face of this complexity, mathematical models offer valuable tools for synthesizing information to understand epidemiological patterns, and for developing quantitative evidence for decision-making in global health

    Dynamics and Control of Diseases in Networks with Community Structure

    Get PDF
    The dynamics of infectious diseases spread via direct person-to-person transmission (such as influenza, smallpox, HIV/AIDS, etc.) depends on the underlying host contact network. Human contact networks exhibit strong community structure. Understanding how such community structure affects epidemics may provide insights for preventing the spread of disease between communities by changing the structure of the contact network through pharmaceutical or non-pharmaceutical interventions. We use empirical and simulated networks to investigate the spread of disease in networks with community structure. We find that community structure has a major impact on disease dynamics, and we show that in networks with strong community structure, immunization interventions targeted at individuals bridging communities are more effective than those simply targeting highly connected individuals. Because the structure of relevant contact networks is generally not known, and vaccine supply is often limited, there is great need for efficient vaccination algorithms that do not require full knowledge of the network. We developed an algorithm that acts only on locally available network information and is able to quickly identify targets for successful immunization intervention. The algorithm generally outperforms existing algorithms when vaccine supply is limited, particularly in networks with strong community structure. Understanding the spread of infectious diseases and designing optimal control strategies is a major goal of public health. Social networks show marked patterns of community structure, and our results, based on empirical and simulated data, demonstrate that community structure strongly affects disease dynamics. These results have implications for the design of control strategies

    Modeling Routes of Chronic Wasting Disease Transmission: Environmental Prion Persistence Promotes Deer Population Decline and Extinction

    Get PDF
    Chronic wasting disease (CWD) is a fatal disease of deer, elk, and moose transmitted through direct, animal-to-animal contact, and indirectly, via environmental contamination. Considerable attention has been paid to modeling direct transmission, but despite the fact that CWD prions can remain infectious in the environment for years, relatively little information exists about the potential effects of indirect transmission on CWD dynamics. In the present study, we use simulation models to demonstrate how indirect transmission and the duration of environmental prion persistence may affect epidemics of CWD and populations of North American deer. Existing data from Colorado, Wyoming, and Wisconsin's CWD epidemics were used to define plausible short-term outcomes and associated parameter spaces. Resulting long-term outcomes range from relatively low disease prevalence and limited host-population decline to host-population collapse and extinction. Our models suggest that disease prevalence and the severity of population decline is driven by the duration that prions remain infectious in the environment. Despite relatively low epidemic growth rates, the basic reproductive number, R0, may be much larger than expected under the direct-transmission paradigm because the infectious period can vastly exceed the host's life span. High prion persistence is expected to lead to an increasing environmental pool of prions during the early phases (i.e. approximately during the first 50 years) of the epidemic. As a consequence, over this period of time, disease dynamics will become more heavily influenced by indirect transmission, which may explain some of the observed regional differences in age and sex-specific disease patterns. This suggests management interventions, such as culling or vaccination, will become increasingly less effective as CWD epidemics progress

    Psychometric Properties of the Parent and Teacher Versions of the Strengths and Difficulties Questionnaire for 4- to 12-Year-Olds: A Review

    Get PDF
    Since its development, the Strengths and Difficulties Questionnaire (SDQ) has been widely used in both research and practice. The SDQ screens for positive and negative psychological attributes. This review aims to provide an overview of the psychometric properties of the SDQ for 4- to 12-year-olds. Results from 48 studies (N = 131,223) on reliability and validity of the parent and teacher SDQ are summarized quantitatively and descriptively. Internal consistency, test–retest reliability, and inter-rater agreement are satisfactory for the parent and teacher versions. At subscale level, the reliability of the teacher version seemed stronger compared to that of the parent version. Concerning validity, 15 out of 18 studies confirmed the five-factor structure. Correlations with other measures of psychopathology as well as the screening ability of the SDQ are sufficient. This review shows that the psychometric properties of the SDQ are strong, particularly for the teacher version. For practice, this implies that the use of the SDQ as a screening instrument should be continued. Longitudinal research studies should investigate predictive validity. For both practice and research, we emphasize the use of a multi-informant approach
    corecore